’

ICASE

IS SOR COLOR-BLIND?

Loyce M. Adams
and

Harry F. Jordan

Report No. 84-14

May 21, 1984

inig -

(NASA-CR-184882) IS SOR COLOR-BLIND?

(ICASE)

32 p

00/61

N89-71338

unclas
0199020

INSILIUIE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the

UNIVERSITIES SPACE s RESEARCH ASSOCIATION

IS SOR COLOR-BLIND?

Loyce M. Adams*
Institute for Computer Applications in Science and Engineering

Harry F. Jordan**
University of Colorado, Boulder, CO
and
Ballistic Research Laboratory, Aberdeen Proving Ground, MD

Abstract

The work of Young in 1950, see Young [1950,1971], showed that the
Red/Black ordering and the natural rowwise ordering of matrices with Property
A, such as those arising from the 5-point discretization of Poisson”s
equation, lead to SOR iteration matrices with identical eigenvalues. With the
advent of parallel computers, multi-color point SOR schemes have been proposed
for more complicated stencils on 2-dimensional rectangular grids, see Adams
and Ortega [1982] for example, but to our knowledge, no theory has been
provided for the rate of convergence of these methods relative to that of the
natural rowwise scheme.

New results show that certain matrices may be reordered so the resulting
multi-color SOR matrix has the same eigenvalues as that for the original
ordering. 1In addition, for a wide range of stencils, we show how to choose
multi-color orderings so the multi-color SOR matrices have the same
eigenvalues as the natural rowwise SOR matrix. The strategy for obtaining
these orderings is based on ''data flow" concepts and can be used to reach
Young”s conclusions above for the 5-point stencil.

The importance of these results is threefold. Firstly, a constructive and
easy means of finding these multi-colorings is a direct consequence of the
theory; secondly, milti-color SOR methods can be found that have the same rate
of convergence as the natural rowwise SOR method for a wide range of stencils
used to discretize parital differential equatiouns; and thirdly, these multi-
color SOR methods can be efficiently implemented on a wide class of parallel
computers,

*

Research supported by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-17070 while the author was in residence at ICASE, NASA
Langley Research Center, Hampton, VA 23665,

**Part of this research was carried out while the author was a visitor at
ICASE, NASA Langley Research Center, Hampton, VA, which is operated under NASA
Contract No. NAS1-17070. This research was also supported in part by
Denelcor, Inc. while the author was on sabbatical from the University of
Colorado at the Ballistic Research Laboratory of the 1/.S. Army.

1. Introduction

The successive overrelaxation (SOR) iterative method can be used to solve a linear system of equations,

Ay =h @)
and is guaranteed to converge if the matrix A is symmetric and positive definite and the relaxation factor, , is in
the interval 0<w<2. If we express A as,

A=D-L-U)
where b,L, and U are the diagonal, strictly lower and upper triangular parts of A respectively, the SOR iteration
matrix, £, is given by (3).

L, = D-ol) (wU+(1-w)D) ' (3)

If we reorder the equations in (1) to get the system A=, the resulting SOR matrix £, is not guaranteed to have
the same eigenvalues as £, of (3) and hence the convergence rates of the two SOR schemes may be different.

The matrix A frequently arises from the discretization of an elliptic partial differential equation on a rec-

tangular region by a local stencil and by numbering the grid nodes in the natural rowwise fashion (left to right,

bottom to top). For example, for Poisson’s equation on a rectangle, we can use the S-point stencil and number the
grid as shown in Figure 1.

e9 010 11 e12
5 —— @6 o7 a8
o1 02 o3 o4

Figure 1. 5-point Stencil and Natural Rowwise Ordering

Young([1950,1971] showed that the Red/Black ordering of the nodes as shown in Figure 2 and the natural rowwise

ordering of Figure 1 led to SOR iteration matrices with the same eigenvalues.

R B R B
5 11 6 12
B—R B R
9 3 10 4
R B R B
1 7 2 8

Figure 2. 5-point Stencil and Red/Black Ordering

Knowing that these SOR matrices have the same eigenvalues is important; since for parallel computers we can
choose the Red/Black ordering instead of the natural rowwise ordering without a degradation in the asymptotic
convergence rate. More parallelism is achieved with this ordering since nodes of the same color are not neighbors

which implies all Red and then all Black nodes may be updated simultaneously.

With the advent of parallel computers, multi-color point SOR schemes have been proposed for more compli-
cated stencils on 2-dimensional rectangular grids, see Adams and Ortega[1982] for example, but to our knowledge
no theory has been provided for the rate of convergence of these methods relative to that of the natural rowwise
scheme. This paper will show that the geometry of the stendil can be used to derive a coloring for the region such
that the multi-color and natural rowwise SOR iteration matrices have the same eigenvalues. The fact that this is
true for a class of stencils containing those of interest in partial differential equations means ﬂ;at highly parallel

iterative methods can be formulated which converge equally as well as their sequential counterparts.

In Section 2, we describe how trying to implement natural rowwise SOR for a 9-point stencil on the Denelcor
HEP, Patel and Jordan[1984], led to a strategy based on data flow ideas for finding orderings that are highly paral-
le! and that produce the same iterates as the natural rowwise iteration. The ideas in Section 2 are formalized in
Section 3 where we prove that the SOR iteration with the orderings generated by the data flow strategy has the.
same asymptotic rate of convergence as the SOR iteration with particular multi-color orderings. In Section 4 we
show how to find these multi-color orderings for a wide range of stencils. In Section 5, we describe some interest-

ing implementation issues for multi-color SOR on various parallel computers. Finally, in conclusion, we

summarize our results, mention generalizations of our ideas to block SOR and muitiple equations per grid point,

and list unanswered questions.

2. Paralielizing the Natural Rowwise SOR Algorithm

In the multiple instruction stream, or MIMD, environment such as that of the Denelcor HEP, it is useful to
investigate speeding up the sequential rowwise SOR computation by using multiple instruction streams called
processes. If an arbitrary number of processes are available in the computing environment, we want to investigate
a MIMD algorithm that implements a parallel SOR iteration that is equivalent to the natural rowwise SOR algo-
rithm.,

The important ideas that this approach yields can best be seen by a specific example. We consider the 9-
point stencil shown in Figure 3.

® ° ®
k k k
) ° ®

k+1 k+1 k

[] [)] [}
k+1 k+1 k+1

Pigure 3. 9-point Stencil

The natural rowwise ordering of a rectangular grid imposes the following update rule, or data flow dependencies,
for the unknown at the center of the stendil: |

NR Stencil Rule
The value at the center of the stendil for iteration k+1 can be calculated after the values to the left of and below
center (backward neighbors) have been calculated on iteration k+1 and the values to the right and above center

(forward neighbors) have been calculated on iteration k.

This rule is depicted in Figure 3 for the 9-point stendil.

To formulate the NR Stencil Rule in the language of data flow, Ackerman[1982], we look at the set of
nXmXK updates implied by the rule for unknowns u()(i j) at grid point (i,j) on iteration k, k=1..X, i=1..n, and
j=1..m. We will use (i,j) to indicate the point in the ith row and jth column of the grid. These define a compu-
tation in a value oriented, or single-assignment, computational model with initial values 4 and boundary values
considered as constants. In this model all values are viewed as having an independent existence with no concept of
updating a storage location, so that nxXm XK storage locations would be needed to store the nxXm unknowns on the
K iterations. It is clear that a sequential rowwise sweep for iteration 1 followed by one for iteration 2, and so on,
is not the only scheduling of equation evaluations consistent with rule NR. For example, with the 9-point stencil,
as soon as u«(1)(1,1) and u(1)(1,2) have been evaluated the computations for u(})(1,3) and u(})(2,1) can proceed
simultaneously and when u(1)(1,2), ¥)(2,1) and u(!)(2,2) have been computed the iteration 2 value »?)(1,1) can be
produced. If we assume an arbitrarily large number of processors and schedule each computation as early as possi-
ble then many computations, possibly associated with different iterations, will occur simultaneously at points span-
ning the region.

In general, to cast this nXm XK scheduling problem into the form of an iteration on an nXm region, with
only nXm storage locations required, it is convenient to require symmetry of the stencil as explained below. For a
structurally symmetric stencil, like our example in Figure 3, a point (i,j) is a forward neighbor of all its backward
neighbors and a backward neighbor of all its forward neighbors. Thus, by the time it is possible to compute
u®*1)(i), the value u)(i,j) has been used to compute u**1) for all backward neighbors and «*) for all forward
neighbors and these are the only computations which require it. Thus only the "current” iteration value is needed
at a specific point (i,j) and the re-use of an nXm storage array is possible for all the schedulings satisfying the NR
rule. The "current” iteration number may be different for different nodes of the region as a function of the
specific schedule. We will assume a structurally symxﬁetric stenall henceforth and use rule NR to refer to the
k+1st update of the point at the center of the stenal. |

For the 9-point stendil and for many others of interest in PDEs this data flow scheme of scheduling updates

as early as allowed by rule NR will be shown to lead to multi-color iterative methods. If each ccmputation takes

one time unit then a subset R of grid points will be associated with computations scheduled at time ¢. At ¢+1a
new subset B of nodes will be computed. If these successively scheduled subsets are disjoint, exhaust the region,
and the time difference between subsequent iterations is the same constant for all nodes, then we will show that
the resulting time schedule has the form of a multi-color iteration.

To continue our example, we consider the 6 by S grid of interior nodes that results from discretizing an 8 by
7 grid with the 9-point stencil with boundary values assumed to be known. This grid is shown in Figure 4 where
the numbers below each node indicate the earliest times that consecutive iterations can begin at the node according

to the NR Stendil Rule if the computation at a node requires one time unit.

G o R B G
14,15,19,23 12,16,20,24 | 13,17,21,25 14,18,22,26 15,19,23,27

1 s4
R B G 0 |' R
9,13,17,21 10,14,18,22 11,15,19,23 12,16,20,24 | 13,17,21,25

G 0 R B G
7,11,15,19 8,12,16,20 | 9,13,17,21 10,14,18,22 11,15,19,23

S5
R B G o] R
S, 9,13,17 6,10,14,18 7,11,15,19 8,12,16,20 9,13,17,21
G o R B G
3, 7,11,15 4, 8,12,16 1 5, 9,13,%7 6,10, 14,18 7,11,15,19
!
i S,

R B G (o] 1 R
1, 5, 9,13 2, 6,10,14 3, 7,11,15 4, 8,12,16 | 5, 9,13,17

3

Figure 4. Earliest Times for the 9-point Stencil

Notice that each node updates every Ar=4 time units. The solid lines in Figure 4 separate the nodes into four dis-

joint sets, denoted S, , S, , S5 , and S, with set S, containing nodes that update for the first time during times 1 to

At, S, containing nodes with first update times in the interval At+1 to 2At, etc. These sets will be formally
defined later. The following statements can be made from Figure 4 by observing these earliest update times. Note
that at times (1,2,3,4) iteration 1 can be done on the nodes in S;, at times (5,6,7,8) iteration 1 can be done on the
nodes in S, and iteration 2 on the nodes in $,; at times (9,10,11,12) iteration 1 on set S, iteration 2 on S, and
iteration 3 on S, can be done; at times (13,14,15,16) iteration 1 on S, iteration 2 on S,, iteration 3 on §,, and
iteration 4 on S; can be done; at times (17,18,19,20) iteration 2 on §,, iteration 3 on §, and iteration 4 on S, can
be done; at times (21,22,23,24) iteration 3 on S, iteration 4 on S; can be done; and finally at times (25,26,27)

iteration 4 can be done on §,.

At this point, it is instructive to remark on the difference between a data flow scheme of assigning times to
the nodes and an an ordering of the nodes as reflected by the order of the equations of A in (1). For the 30 nodes
(30 equations) in Figure 4, the scheme of assigning update times at a node to be the earliest times for which the
data for the node was available according to the NR Stencil Rule resulted in 15 unique times being assigned to the
nodes on the first iteration; whereas, an ordering must assign the integers 1 to 30 to the nodes. However, there
are orderings that are consistent with the NR Stendl Rule that can be constructed by considering the update times

for the first iteration that resulted from the data flow scheme. We define these orderings in Definition 1.

Definition 1.
An NR data flow ordering of the nodes of a grid is an ordering by the first earliest update times according to the

NR rule with ties being resolved arbitrarily.

There are many orderings of the 30 equations of A in (1) that do not violate the NR Stencil Rule, but do not have
the same update times for the first iteration as shown in Figure 4. One such ordering is the natural rowwise, left
to right, bottom to top ordering. All orderings that do not violate the NR Stencil Rule are non-migratory permu-
tations of one another, as described in Young[{1971], and will result in SOR matrices with equal eigenvalues. How-
ever, it is the NR data flow orderings that are useful in proving our theorems about particular multi-color SOR

iterations.

A crucial observation is that at times (13,14,15,16), nodes from all four sets are being updated and that all
nodes which can be updated at a particular time, say 13, are not neighbors. Hence, if we color all nodes Red that
are updated at time 13, all nodes Black that are updated at time 14, all nodes Green that are updated at time 15,
and all nodes Orange that are updated at time 16 as shown in Figure 4, it is clear that the schedule of updates for
four iterations of SOR consistent with the NR Stencil Rule conains one iteration (times 13,14,15,16) of a multi-
color SOR iteration (R/B/G/O-SOR) as defined by Adams and Ortega[1982]. If we order the colors R/B/G/O as
1/2/3/4, a closer examination of Figure 4 also reveals that nodes of color i in S, arecomecgedonlytonodaof
colors greater than i in §;_; and only to nodes of colors less than i in §;,,. Also nodes in §; are not connected to

any nodes in sets greater than i+1 or less than i—-1.

A strategy for proving that the SOR iteration matrix that results from ordering the Red equations first, fol-
lowed by the Black, Green, and then Orange equations will have the same eigenvalues as the natural rowwise SOR
iteration matrix has evolved from this example. We now formalize this strategy.

3. Theory

The data flow example of the last section leads us to begin with the following definitions:

Definition 2.

A multi-color, or c-color, matrix is a ¢ Xc¢ block matrix of the form

Xy D, . . Xy
M=

X, . . .D,

L J

where the D; are diagonal matrices, each assodiated with a different color, and the X, are arbitrary.

Definition 3.

A nulti-color T matrix is a block tridiagonal matrix of the form,

r

M, L,
Uu M L,
Ty = U, :
Ms—l L:-1
U M

| =1 5]

where M,, 2si=<s—1, are multi-color matrices with ¢ colors numbered 1..c respectively; M, is a multi-color matrix
with ¢—f+1 colors numbered f..c respectively; M, is a multi-color matrix with e<c colors numbered 1..e respec-
tively. In addition, the matrices L;, 2si=s—2 are strictly lower c¢X¢ block triangular matrices; the matrix L, is a
(c=f+1)X(c) block matrix with blocks B;=0 if j=i+f—1; the matnx L., is a cXe block matrix with blocks

B,=0if j=i; and the matrices U;, i=1..s—1 have the transposed form of the matrices L;, i=1..5—1 respectively.

It is easy to show that the matrix that results from permuting the rows and columns of T, to bring nodes of color
j from all M; together into the same block D, is a multi-color matrix with ¢ colors ordered 1..c respectively. Such

a matrix is called the multi-color matrix associated with T),.

In relation to Figure 4 with R/B/G/O representing colors 1/2/3/4, the blocks M;, i=1..4 correspond to the four
sets S;, i=1..4, with the nodes in a given block ordered by colors, the value of c=4, the value of f=1 and the

value of e=3. The matrix T), has the following form where D, indicates the nodes of color i from block M;.

ol

)

[

ol

12

ol

ol

[<]

:
0

X 0

X X |
x x
D, X

X Dy
x x|
X X

0 x

X 0
x x
x x |
D,, X
X Dy

10

The associated 4-color matrix is

We now prove our major theorem.

Theorem 1

A multi-color T matrix and its associated multi-color matrix have SOR iteration matrices with the same eigen-

values.

11

Proof:
Let £, be the SOR matrix for the multi-color T matrix
L., be the SOR matrix for the multi-color matrix

P be the permutation matrix that transforms the multi-color T
ordering to the multi-color ordering

Definition 3 guarantees that a multi-color T matrix is also a banded matrix with semi-bandwidth equal to ¢—1 with
the blocks D, on the diagonal being diagonal blocks. This means that consecutive iterations of SOR can occur for
every node every ¢ time units. Let Of“) represent the set of carliest times, ¢, that the nodes in blocks D, in block
M; can be updated on iteration k. Specifically,

QY = {t | (k—1)c+1stske—f+1}

O = {t| (k+i-c—f+2=sts(k+i—1)c—f+1}, 2siss—1 (4)

QW = {t | (k+s=2)c—f+2sts(k+s=2)c—f+1+e}
and it follows that iterations s—1,5—2,...,1 can be done on the nodes in blocks M;, i=1.2,..,s—1 respectively
before iteration 1 is started on the nodes in block M,. Also, we can conclude from (4) that at the ¢ times (s+i-
2)cf+2 to (s+i-1)c-f+1 inclusively, a multi-color £, , iteration with colors numbered 1..c can be done. This sug-

gests that we consider the matrix L1, in the factored form,
£T,u=£s£:—l s Lol (5)

where the NXN matrix £, represents one SOR iteration on the nodes in block M, of the multi-color T matrix. In
particular, let

(1) n; be the number of nodes in block M;

2) 1, be the NXN matrix with a 1 in the diagonal position of the row associated with the jth node of block M,

and zeroes elsewhere

(3) By be the NxN matrix with the row associated with the jth node of block M; being equal to the row of the

Jacobi iteration matrix, B=D"!(L+U), assodated with this node and all other rows being zero.

12

Then £, can be written as

n

L= Hl(wB gy + 1~ wljy)) (6)
j-
and has the form
f'Il
I
Ii—l
Li= X X X ™
Ii+1
I.i'

Now, k+s—1 iterations of multi-color T SOR can be expressed in terms of k iterations of multi-color SOR as
LES™H = RPTLE PS @®
where

R = (£: o EJ‘CZ)'"(‘c:ﬂ;—lﬂ:—l)(ﬁsﬁs—1)(£:) (9)

S = (L) (Lyz " LoL)Ly -+ - LoLy)

Since det(Lr,)=(1~w)¥ where N is the size of L7, it follows that L1 , is nonsingular if w # 1. Hence the fac-

tors in (5) and R in (8) are nonsingular whenever o # 1.

So, for w # 1, it follows from (8) that
Lys~t =RPTLk PRTIRS (10)

Since the multi-color T matrix is block tridiagonal, the matrix £, commutes with £, if j # i—1,/+1 as is easily

seen by (7). By applying this fact to the product RS in (10), we get,

RS = £§} (11)

13

Hence, forw # 1,
L, =RP7IL¢ PR (12)

“and it follows that Lr,and L., have the same eigenvalues.

Finally, the case w=1 follows because the eigenvalues of a matrix are continuous functions of the coefficients of

the matrix, and the theorem is proved.

Now, consider the five sets that would be formed in Figure 4 by letting f=4. This results in a grouping of nodes
with the earliest first update times of 1, 2-5, 6-9, 10-13, and 14-15 into sets 1 to S respectively. This corresponds
to assigning the numbers 1/2/3/4 to the colors B/G/O/R respectively with the other values in Definition 2 being c=4
and e=2. The resulting T,, matrix is the same as that for the assignment of 1/2/3/4 to the colors R/B/G/O in the
previous example; however, the block structure is different, indicating different associated multi-color matrices.
Also, we could let f=3 and then f=2 and effectively describe G'O/R/B and O/R/B/G orderings of the equations.
This discussion leads to the following Corollary.

Corollary 1.
If the multi-color T matrix results from a NR data flow ordering of the grid points, the ¢ multi-color SOR matrices

that arise by letting f in Definition 2 vary from 1 to ¢ have the same eigenvalues as the natural rowwise SOR
matrix.

Proof:

From Theorem 1 we conclude that the ¢ multi-color SOR matrices have the same eigenvalues as the multi-color T

SOR matrix. However, the multi-color T ordering is the NR data flow ordering which is just a non-migratory per-

mutation of the natural rowwise ordering and the corollary follows.

For our example, the R/B/G/O, B/G/O/R, G'O/R/B, and the O/R/B/G SOR matrices have the same eigenvalues as

the natural rowwise SOR matrix, and thus an iteration done with any of these multi-color matrices will converge at

14

the same asymptotic rate as the iteration using the sequential rowwise matrix.

The question arises whether there are other four color orderings for the 9-point stencil of Figure 3 that lead
to multi-color and natural rowwise SOR matrices that have the same eigenvalues. We provide a partial answer to

this question with Corollary 2.

Corollary 2.
The multi-color SOR matrix associated with the matrix T, in Definition 3 and the multi-color SOR matrix that

results from ordering the equations of T), in reverse order have the same eigenvalues whenever T, is symmetric.

Proof:
Let A,, £,, and A, £, be the respective multi-color T and multi-color T SOR matrices for the forward and
reverse orders respectively. Then by Theorem 1, the multi-color SOR matrices have the same eigenvalues as £,
and £, , respectively. It remains to show that £, , and £, , have the same eigenvalues.
Now, let

Ay =D\-L-U;
and

A; = Dy-Ly- U,

where D;, L,, and U, are defined by (2).

If P is the permutation matrix from the forward to the reverse ordering, we have,
P'D\P=D,; PTL\P=U, PTUP=L,
and
PTL, P = (Dy—wUy) (wL,+(1~w)D)

But since A, is symmetric, U,=L} and

15

PTL1 P = [0Us+(1=0)D)(DyoL) ™'

Since a square matrix has the same eigenvalues as its transpose, and the eigenvalues of a product AB equals the

eigenvalues of BA, it follows from (3) that £, , and £, , have the same cigenvalues and the corollary follows.

Therefore, for Figure 5, the O/G/B/R, R'O/G/B, BR/O/G, GB/R/O, and the natural rowwise orderings have SOR
matrices with the same eigenvalues whenever the matrix A of (1) is symmetric.

Obviously, there are other 4-color topologies of a rectangular grid that is discretized with the 9-point stencil
of Figure 3. For example, consider the coloring shown in Figure 6.

R GlR Gli‘

o B o B o

G R G R G

B oln 3] B
R G

R G R

Figure 6. Columnwise Coloring for the 9-point Stencil

With the sets indicated in Figure 6, the R/B/G/O, BBG/O/R, GO/R/B, O/R/B/G orderings lead to SOR matrices
with the same eigenvalues as the natural columnwise (left to right, bottom to top) SOR matrix. Another example,
that was given in Adams[1982] is shown in Figure 7 along with the associated earliest update times for the first two

iterations.

16

G 0 G (o)
11,15 12,16 11,15 12,16

R B B
9,13 10, 14 9,13 10,14
G) G)
7,11 8,12 7,11 8,12
R B R B
5, 9 6,10 5, 9 6,10
G o G 0
3, 7 4, 8 3, 7 4, 8
R B R B
1, 5 2, 6 1, s 2, 6

Figure 7. Rowwise~like Coloring for the 9-point Stencil

These update times were obtained by considering two different update rules for the grid. The first rule applies to
the R and G points and is identical to the rule in Figure 3 except the data used from the west neighbor is from
iteration k instead of k+1. The second rule applies to the O and B points and is like Figure 3 except the data used

from the east neighbor is from iteration k+1 instead of iteration k.

The sets indicated above show that f=1, and e=4. Also, the value of f can not be changed and still maintain
a multi-color T matrix since all colors must be present in each set for the earliest times shown above. Theorem 1
can be applied to Figure 7 to prove that R/B/G/O SOR has the same eigenvalues as a multi-color T SOR matrix
that is natural rowwise-like in the sense that we update nodes in set 1 before those in set 2, etc., but within sets

the ordering is R/B/G/O and is not a nonmigratory permutation of the natural rowwise ordering.

So far, we have shown that the 9-point stencil has multi-color orderings with SOR matrices having eigen-
values identical to those of the SOR matrix for the natural rowwise ordering, the natural columnwise ordering, and

a rowwise-like ordering. Next, we turn to the practical questions,

17

(1) What stendils have multi-color and NR SOR matrices with the same eigenvalues?

(2) How do we find these multi-color orderings?

4. Special Stencils and NR-Equivalent Multi-Color Orderings

In this section, we define a class of stencdils for which a discretized rectangular domain has multi-color ordex-
ings with SOR matrices that have the same eigenvalues as the natural rowwise (NR) SOR matrix. In addition, we
show how to find these colorings and illustrate the procedure for several well known stencils. We begin with the

following definitions.

Definition 4
A stendl S is a pattern of neighbors for a given node (7,7). The stencil has (0,0) as its center node and is defined
relative to (7)) as follows: (p,q) is said to be a node in stencil S if for all (i,j) in the region, the node (i+p,j+q) is

a neighbor of (i,j) provided it is also in the region.

Definition 5
A stendil that is structurally symmetric about node (0,0) is a SO-stendil. That is, if node (i,j) is in the stendil, then
node (—i,~j) is also in the stencil.

We note that a symmetric stencil leads to a symmetric non-zero pattern in the matrix A of (1), but does not neces-

sarily lead to numerical symmetry of A.

Now, recall from the 9-point stencil example of the last section that every node could be updated every c
time units, where ¢ was the number of colors. This fact was reflected in the definition of a multi-color T matrix
and was necessary to proving that the R/B/G/O, B/IG/O/R, G/O/R/B, and O/R/B/G SOR matrices for Figure 5 had
the same eigenvalues as the NR SOR matrix. However, update rules based on other orderings, as shown in Fig-
ures 6 and 7, also lead to constant update intervals but may nét be equivalent to the NR ordering. We now seek a
class of stencils for which a constant updating increment is both necessary and sufficient to find multi-color order-

ings that are equivalent to the NR scheme.

18

The first step in this direction is to consider stencils for which consecutive nodes in a given row of the grid
update one time unit apart. This is ensured by requiring that a SO stencil contain node (0,1), and likewise, node

(0,-1). Such a stencil is called a (0,1)-SO stencil, and the result is proven in Theorem 2.

Theorem 2.
If a rectangular grid is discretized with a (0,1)-SO stencil and an iteration is done at the earliest time according to
rule NR and requires one time unit to complete, then iteration k for node (i,j+1) begins one time unit later than

iteration k for node (i,j).

Proaf:
The proof is by induction on k. For each value of k we induct on i and for each value of i we induct on j. The

proof is given in its entirety in the Appendix.

We remark that we have been able to find multi-color orderings for SO stendils with the properties that nodes
update every ¢ units of time and the SOR matrices have the same eigenvalues as the NR scheme, but do not con-
tain node (0,1). However, this requirement that a node have an "east” and "west" neighbor is not restrictive for

stencils that are commonly used for PDE’s as will be illustrated later.

The next step is to further restrict the stendil so that a node updates every ¢ time units. The NR rule says
that the time a node can update on iteration k+1 is a function of the times its backward neighbors were updated
on iteration k+1 and the times its forward neighbors were updated on iteration k. However, the times the nodes
update on the first iteration are determined by the backward neighbor times only. Since stencils of interest contain
a node in row -1, it is convenient to consider stencils for which a node in row -1 is the last backward node to be
updated. This will be true for node (—1,a) if nodes strictly below the x-axis and strictly above line L, in Figure 8
are excluded from the stencil as indicated by the darkened nodes in Figure 8. Node (—1,a) is called the "control-

ling" backward neighbor.

19

Lz'.x=—(a+1)y+'y(a-+l-1)+a
\o\o ° ° ° ° ° ° °

v

)
o
T
o
5
o
o
o
°
°

Lyx=—(a+1)y—1

Figure 8. Excluded Backward and Forward Neighbors

Similarily, we require the last forward neighbor to be updated to be above the x-axis in row y and column
B, B=0. This will be true for node (y,B) if we do not allow nodes above line L, to be in the stencil as shown in
Figure 8. The nodes (-3,0) and (-3,1) are excluded by symmetry of the stencil since (3,0) and (3,-1) are excluded
as forward neighbors. Node (v,B) is called the "controlling” forward neighbor. Again, this is not a real restriction

for practical stendils. Figure 8 was the motivation for our major definition below.

Definition 6

A SO-stencil that contains nodes (0,1), (—1,a), and (y,8) with a,8=0 and v>0 but does not contain nodes

{yx)y=-1]x>~(a+1)y-1}

{0x).y=0 | x>=(a+1)y+y(a+1)+p}

is an (a,B,v)-SO Stencil.

20

The classification of six commonly used stencils as (a,B,v)-SO stencils is shown in Figure 9.

(v,8)
]

o—o—o (0,1)
(—1,(!)

(010,1)-50 stencil

o o (v,B)
0—0—0
RN

o o (=-1,%)

(1,0,1)-S0 Stencil

(v,8)

o] I o]
, B
.o N\

o o

(1,0,2)-SO Stencil

(2,0,2)~-S0 Stencil (0,0,2)~S0 Stencil

Figure 9. The Classification of Some Common Stencils

Hence, we see that it is quite an easy task to find the values of «, B, and v for a given stencil that satisfy Defini-

tion 6. It is also easy to construct many stencils for given values of «, 8, and ¥.

In Theorem 3 below, we express the value of ¢ in terms of a, B, and vy and describe how to color the grid so

that ¢ equals the number of colors.

Theorem 3.

"If a rectangular grid is discretized with an (a,8,y)-SO stencil, the matrix A of (1) that results from the NR data

21
flow ordering is a multi-color T matrix with
c=y(a+1)+(B+1)
colors. Furthermore, if the firsf node is colored f and node (i,j) is color
[V j)+f—2]mod c + 1
then the blocks M;, M,, r=2..s—1, and M, contain the nodes in set S, §,, r=2..s-1, and S, below:

S = {@J) | 1= j)sc—f+1}
S, = {(iJ) | (r=De~f+2stV(ij)sre—f+1 },2<r=<s

S, = {(i) | (s-=De—f+2=tV(i,j)s(s—1)c—f+1+e}

Proof:
It is sufficient to prove that all nodes can update every c time units, since the above specifications for M,, r=1..s,
and the coloring rule follow from this fact. The proof is an induction on k and for each k we induct on i and use

Theorem 2 to replace the j induction. The proof is given in the Appendix.

Theorem 3 and Corollary 1 show that the ¢ multi-color SOR matrices gotten by letting f vary from 1 to ¢ have the

same eigenvalues as the SOR matrix associated with the NR data flow ordering.

5. Implementation of Parallel SOR

The data flow view of rowwise sequential SOR as a collection of computations to be scheduled as early as
possible makes it clear that a parallel SOR algorithm is possible for a shared memory MIMD machine. It was the
investigation of such an algorithm on the HEP computer which stimulated this paper, Patel and Jordan[1984). The
fact that stencils of interest lead to the multi-color scheme which updates fixed, disjoint and exhaustive subsets of

the grid points means that implementation on an SIMD or vector computer is also simple. The degree of parallel-

ism of the algorithm, number of processes in MIMD, or vector length in SIMD is ":m where ¢ is the number of

22

colors. Since the stendils of interest are limited in extent, multi-color SOR is also suitable for MIMD machines in

which data communication costs are significant, such as the processor arrays discussed in Adams[1982].

nxXm
c

In implementing multi-color SOR on a vector computer, ¢ vectors of length are updated cyclically.

Since the vectors consist of subsets of region points and are fixed throughout the iteration, it is appropriate to
reorder the data structure to bring all pbints of a given color into a single vector. If the nXm array is stored row-
wise in memory, the regularity of the coloring pattern for a given stencil on the right sized grid may make it possi-
ble to form vectors with a constant stride between elements without reordering the data structure. Some vector
architectures will handle constant stride vectors directly. The computation to update the vector of, say, red nodes
will be a linear combination of the vectors for nodes of other colors. Two or more shifted versions of a vector
may be used, since the stendil centered on a red point may include more than one, say, black neighbor. Other

comments on SOR in connection with vector computers can be found in Buzbee,et al{1977] and Adams[1983].

In a shared memory MIMD implementation, the structuring of data is unimportant. Instead, the main issue
is that of synchronizing processes so that a scheduling consistent with rule NR results. Potentially, the process
updating point (i,j) for the kth time would have to verify that all backward neighbors have been updated k times
and all forward neighbors k—1 times. Hov)ever, for (a,B,y)-SO stendils, it is sufficient to verify that point (—1,a)
has been updated k times and point (y,B) updated k—1 times. Synchronization at one point in the forward direc-
tion and one point in the backward dir?ction is all that is needed. With shared memory, it is useful to think of the
processes moving across the array following a wave of computation. The HEP algorithm mentioned above started
with order n parallelism by letting one process sweep each row with the sweeps being as simultaneous as possible
under the synchronization rules. Observing that sweeps for subsequent iterations could be started before the

nXm

current one finished led to the multi-color algorithm with parallelism . Synchronization on the HEP was

done by the producer/consumer mechanism with a computation consuming values from neighbors (—1,x) and

(v,B) and producing two new values, one for each of these neighbors.

23

On an MIMD machine where the processors are arranged in an array, it is no longer appropriate to let the
processes move through the array of processors. A single processor would perform computations for a fixed
subregion, preferably containing an equal number of points of each color. Synchronization becomes a by-product
of the communications required to pass new iterates to other processors which require them. The storage organi-
zation places a node into the local memory of the processor responmsible for updating it. This situation is
thoroughly covered in Adams(1982).

6. Conclusions

The results of this paper give the practitioner in numerical partial differential equations the assurance that
one can use highly parallel multi-color SOR methods that have exactly the same convergence properties that are
associated with the rowwise sequential method, and that these particular multi-color orderings are easily con-
structed. Thus, in this sense SOR is color-blind.

~ There are, however, colorings, like those in Figures 6 and 7, which decouple the stencil on the region which
have SOR matrices with the same eigenvalues as columnwise and other, less regular, orderings. The relationship
of SOR with these orderings to the natural rowwise SOR is still an open question in general. However, for the 5-
point stencil of Figure 10 the Red/Black, Black/Red, natural rowwise, and natural columnwise orderings all have
SOR iteration matrices with equal eigenvalues which corroborates Young’s results that were obtained by the use of
consistently ordered matrices. In addition, for symmetric matrices, our results show that for the 6-point (1,0,1)-
SO stencil of Figure 10 all 6 orderings of the unique 3-color pattern which decouples the stencil lead to NR
equivalent SOR matrices. This means that columnwise and rowwise SOR have the same asymptotic convergence
rate for this stencil. For the 9-point (1,1,1)-SO of Figure 9, for symmetric matrices, we only exhibited 8 orderings
using 4 colors that were equivalent to the rowwise natural ordering. These 8 are a small fraction of the evaluation

orderings on several 4 color topologies which decouple the stendil on the grid.

The multi-color T matrix defined here does not appear to lead to the determination of an optimal relaxation
factor, w, for SOR by relating the eigenvalues to the Jacobi iteration matrix as was the case for Young’s T

matrices. Nevertheless, if the matrix A in (1) is a Stieltjes matrix, a "good” estimate of w can be found so that any

24

ordering (and hence multi-color orderings) will yield a convergence rate which is at least one-half the convergence

rate associated with the optimal ordering. This result is due to Kahan and can be found in Young{1971].

The development also makes clear some of the issues involved in implementing multi-color SOR. Insensi-
tivity to a cyclic permutation of the colors and the equivalence of a reversed color cycle to a backwards rowwise
sweep for symmetric matrices are cases in point. A particularly nice correspondence is that of the points (—1,a)

and (v,B) to the backward and forward synchronization points of the shared memory MIMD implementation.

The technique of using data flow ideas to find orderings clearly extends to regions of three or more dimen-
sions as does the shared memory MIMD approach of engaging multiple processes in simultaneous rowwise sweeps.
The equivalence of a fast scheduling of the data flow operations to a multi~color scheme will again depend some-
what on stencil geometry so the idea of an («,B,y)-SO stencil will need to be generalized.

The extension to block SOR can be done by defining a block multi-color T matrix and by considering the
{o,B,v7)-SO stencil to represent connectivity between blocks of nodes. The convergence rate of block SOR for cer-
tain block multifoolor orderings of mesh problems leading to irreducible Stieltjes matrices has been compared to a
2-line SOR scheme by O’Leary[1983]. Our results can be used to show that her interesting P> ordering leads to a
block multi-color T matrix for which the associated block multi-color SOR matrix has the same eigenvalues as a

block columnwise SOR matrix.

For point SOR with multiple equations per node a multi-color scheme can be formulated in which equation 1
is evaluated for all points of one color, followed by equation 2 for that color, etc., before moving to the next
color. An argument equivalent to the current one can be used to show the SOR matrix has the same eigenvalues
as that for a rowwise sequential sweep of the grid points with all equations being evaluated at a point in the same

. order as for the color groups in the parallel method.

Acknowledgements

Thanks are due Nisheeth Patel for the practical side stimulus which led to a discussion between one of us,
Burton Smith, Dennis Gannon, Kenneth Batcher and Gary Rodrigue at a forumn in Oregon, expertly hosted by
Bill Buzbee of Los Alamos and George Michael of Lawrence Livermore National Laboratories. Enthusiastic and
valuable support was provided by Milton Rose, Robert Voigt, and Merrell Patrick both personally and through the
ICASE working environment. James Ortega also contributed discussion and enthusiasm for the work.

Al

Appendix

Proof for Theorem 2

Let
S represent the stencil

t®)(i,j) = the earliest time that iteration k can begin for node (i j)
Sp = {i | ({,})eS for some (=0}
Sc = {j<0 | (0,)es}

L = r&aoxl where (j,)eS

The proof is by induction on k.

The proof for k=1 is by induction on i. For i=1, the (0,1)-SO stencil guarantees that r(!)(1,j+1)=¢1)(1,/)+1.
We assume that

10)(g j+1)=11(g,/)+1
for g<i and prove that

1 j+1) = (O, j)+1 (1)

Now,

W j+1) = max max)i h)+

(i, j+1) {{;.sm—/-lesc}[' (i,)+1], o
max [N(gj+1)+ A, _;+1

{z<i|g-iesg}[t g+ 1)+ 8- +1)}

If {g<i|g—ic Sy} is empty, then (1) follows immediately from an induction on j; otherwise, (2) can be written as

A2

)i .1+ = ,
(i j+1) = max {{hs”h_j s t4)(i,h) o
(g)+ &, +1] +1
< T [(gJ)+ By +1] +11}
Since £1)(i,1)= [f(g,1)+ 5,-;+1], (1) follows from an induction on j.
{g<i |8 i€Sg}
Secondly, we assume t(")(i,j+1)=r(")(i,j)+1 and prove
(e (i j+1) = (U3)+ @)
Now,
k1) j+1) = k+1) +
(1) = max(max KOG,
k+1)
{8«'8_‘65’}[% (g j+1)+ A, +1],)
k(g j+ +
{,z:‘?f-‘ies,}['((8J+1D+ &, +1] }
Since {g=i]|g—i€Sz} is not empty for (0,1)-SO stencils, the last term may be written as
k)(g.j)+ +1]+
e (g)+ &, +1]+1)

Now, if {g<i|g—i€Sz} is empty, (4) follows from an induction on j; otherwise the second term in (5) can be writ-

ten as

k+1
{g(l‘g X o1 [(* (g)+ A it 11+1)

and (4) follows from an induction on j and the theorem is proved.

Proof for Theorem 3.
It is sufficient to prove that all nodes can update every ¢ time units, since the block definitions and the coloring
rule given in the theorem trivially follow this fact. Since an (a,B,v)- SO stendil is also a (0,1)-SO stencil, Theorem

1 implies that we only need to prove that

(G, 1)~ (1) = o+ D+ (B+1) = ¢ ®
for k=1.
Let Sp, Sc, and A, be as defined in the proof of Theorem 2. Now, the first iteration can begin at node (i,1) at
time,

1)(i (1)
(G = max 1)+ A1) ©)

By the definition of an (a,B,v)-SO stendil,

I e W T
with equality when g—i=-1 and when g—i=v.
By using (10), (9) can be written as
t1(i,1) = max {{g<1—1t}1f§i+1es,}[ta)(g’l)+ B,-i+1], -
O(i~1,1)+(a+1) }
and if we choose 1(1)(1,1)=1, it follows from an induction on i that
tU(i,1) = 1+(-1)(a+1) (12)
Now,
tAG,1)-tV(,1) = gt :eS,}(t(Z)(g L=+ A, +1],
{gz..'rff.-es.}["“@’1>—f‘“<i,1>+ " *
When i=1,
A(1,1)—-11)(1,1) = max {[fD(y+1, 1)"'3] x s,}[t(l)(g 1)+ 8,1}

and /(1,1)—-r1(1,1)=1+~(ax+1)+B from (10),(12), and from an induction of i in equation (13), equation (8)

A4

follows for k=1.

Next, assume (8) is true for k-1, and prove true for k.

Now,
k+1)(; 1Y —®)(; 1) = k1) (g 1) = (k=1)(} 1)1+ ,
& 11, 1)~ 4)(i, 1) max{{gqun:}@k}[t (8,1)—t*"D(i, 1)1+ A,_;+1], (
14)
=1 1)— %= 1)+ A _ +
{gzi??fies,}[t (8,1)—-t*7N0E, 1)+ A, +1] }
When i=1,
k+1)(])= 0)(1.1) = =g 1)=fk-1D(1.1)+ A _. +
tk+1)(1,1)—£k)(1,1) {gzlllnf—xlesx}[t (8, D)— 1 "D+ 4, ,+1]
and

(40(1,1) = #9(1,1) = (9(1,1) - FI(1,1) = ¢

from (10) and (12). Hence (14) is true for i=1, and by induction on i in equation (14), the theorem is proven.

REFERENCES
W.B. Ackerman, "Data Flow Languages,” Computer 15, 2, Feb. 1982, pp. 15-25.

L.M. Adams, "Tterative Algorithms for Large Sparse Linear Systems on Parallel Comput-
ers,” Ph.D. dissertation, University of Virginia; also published as NASA CR-
166027, NASA Lgngley Research Center, November, 1982.

L.M. Adams and J.M. Ortega, "A Multi-color SOR Method for Parallel Computation,”
Proc. 1982 Intl. Conf. on Parallel Processing, Bellaire, MI, August 1982, pp.
53-58.

L. Adams, "An M-Step Preconditioned Conjugate Gradient Method for Parallel Compu-
tation,” Proc. 1983 Intl. Conf. on Parallel Processing, Bellaire, MI, August
1983, pp. 36-43.

B.L. Buzbee, G.H. Golub, and J.A. Howell, "Vectorization for the CRAY-1 of Some
Methods for Solving Elliptic Difference Equations,” High Speed Computer and
Algorithm Organization, D.J. Kuck, D.H. Lawrie and A.A. Sameh, eds.,
Academic Press, NY, 1977, pp. 255-272.

Dianne P. O'Leary, "Ordering Schemes for Parallel Processing of Certain Mesh Prob-
lems,” SIAM Journal on Scientific and Statistical Computing, Vol. 5, No. 2,
Sept. 1984, pp. 620-632.

N.R. Patel and HLF. Jordan, "A Parallelized Pcint Successive Over-Relaxation Method on
a Multiple Instruction Multiple Data Stream Computer,” submitted to Parallel
Computing.

D. Young, "Iterative Methods for Solving Partial Differential Equations of Elliptic Type,"
Doctoral thesis, Harvard University, Cambridge, Mass., 1950.

D. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

